1/31/2021 C Programming-Operators

Hands On C
500 Working Programs

Operators

Performing Basic Math Operations

Operator Operation

+ Addition

- Subtraction

* Multiplcation
/ Division

localhost:8888/notebooks/C Programming-Operators.ipynb 1/16



1/31/2021 C Programming-Operators

In [1]: #include <stdio.h>
int main(void)
{
int y, slope = 3, intercept = 2, x = 4;

y = slope * x + intercept;

printf("Y = %d\n", y);
}

Y = 14

In [2]: #include <stdio.h>

int main(void)

{
long seconds_in_a day = 60 * 60 * 24;
int hours_in_a day = seconds_in_a day / (60 * 60); // Note parentheses to for
printf("Seconds in a day %ld\n", seconds_in_a_day);
printf("Hours in a day %d\n", hours_in_a_day);
}

Seconds in a day 86400
Hours in a day 24

Understanding the C Modulo (Remainder)
Operator

localhost:8888/notebooks/C Programming-Operators.ipynb 2/16



1/31/2021 C Programming-Operators

In [3]: #include <stdio.h>

int main(void)

{

int result, remainder;

result =7 / 2;

remainder = 7 % 2;

printf("Result %d Remainder %d", result, remainder);
¥

Result 3 Remainder 1

Understanding the C Increment Operator

variable++ is the same as variable = variable + 1
++variable is also the same as variable = variable + 1

The difference occurs when the expression is used in an assignment

localhost:8888/notebooks/C Programming-Operators.ipynb 3/16



1/31/2021 C Programming-Operators

In [4]: #include <stdio.h>

int main(void)

{

int a = 9, b;

b = a++;

printf("a %d b %d", a, b);
¥
albo

In [5]: #include <stdio.h>

int main(void)

{

int a = 9, b;

b = ++a;

printf("a %d b %d", a, b);
}
albl1

Understanding the C Decrement Operator

localhost:8888/notebooks/C Programming-Operators.ipynb 4/16



1/31/2021 C Programming-Operators

variable-- is the same as variable = variable - 1
--variable is also the same as variable = variable - 1

The difference occurs when the expression is used in an assignment

In [6]: #include <stdio.h>

int main(void)

{

int a = 9, b;

b=a--;

printf("a %d b %d", a, b);
}
a-1bo

In [7]: #include <stdio.h>

int main(void)

{

int a = 9, b;

b=--3;

printf("a %d b %d", a, b);
}
a-1b-1

In [8]: #include <stdio.h»>

int main(void)

{
char letter;
for (letter = 'A'; letter <= 'Z'; letter++)
putchar(letter);
}

ABCDEFGHIJKLMNOPQRSTUVWXYZ

localhost:8888/notebooks/C Programming-Operators.ipynb 5/16



1/31/2021 C Programming-Operators
In [9]: #include <stdio.h>

int main(void)

{

int count = 100;

while (count >= 0)
printf("%d ", count--);

100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 75
74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 4
8 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22
21 20 19 18 17 16 15 14 13 12 11 16 9 8 76 54 3 2 1 0

Understanding a Bitwise Or Operation

2 0000 0010
5 0000 0101

--------- Bitwise OR
7 0000 0111

localhost:8888/notebooks/C Programming-Operators.ipynb 6/16



1/31/2021 C Programming-Operators
In [10]: #include <stdio.h>
int main(void)
{

unsigned int a = 2, b = 5;

printf("Bitwise Or Result %d", a | b);

Bitwise Or Result 7

Understanding a Bitwise And Operation

2 0000 0010
5 0000 0101

--------- Bitwise And
7 0000 0000

localhost:8888/notebooks/C Programming-Operators.ipynb 7/16



1/31/2021 C Programming-Operators
In [11]: #include <stdio.h>
int main(void)
{

unsigned int a = 2, b = 5;

printf("Bitwise And Result %d", a & b);

Bitwise And Result ©

Understanding a Bitwise Exclusive-Or

Operation
2 0000 0010
7 0000 0111

--------- Bitwise Exclusive Or
5 0000 0101

localhost:8888/notebooks/C Programming-Operators.ipynb 8/16



1/31/2021 C Programming-Operators
In [12]: #include <stdio.h>
int main(void)
{

unsigned int a = 2, b = 7;

printf("Bitwise And Result %d", a ™ b);

Bitwise And Result 5

Using Shorthand Notation to Apply an Operation
to a Variable

a += 5 is the same a = a + 5
a *= 2 is the same as a =
a /= 3 is the same as a =

localhost:8888/notebooks/C Programming-Operators.ipynb 9/16



1/31/2021 C Programming-Operators
In [13]: #include <stdio.h>

int main(void)

{
int a = 5;
a += 5;
printf("vValue of a is %d\n", a);
a *= 2;
printf("Value of a is %d\n", a);
}

Value of a is 10
Value of a is 20

Understanding the C Conditional Operator

a=1; is the same as a=1;

b = 2; b = 2;

if (a < b) min = (a < b) ? a: b;
min = a;

else
min = b;

localhost:8888/notebooks/C Programming-Operators.ipynb 10/16



1/31/2021

In [14]: #include <stdio.h>

int main(void)

{

int a =1, b = 2, min;

min = (a < b) ? a: b;
printf("Minimum value is %d", min);

}

Minimum value is 1

C Programming-Operators

Understanding the C sizeof Operator

In [15]: #include <stdio.h>

int main(void)

{

printf("The
printf("The
printf("The
printf("The

}

The
The
The
The

localhost:8888/notebooks/C Programming-Operators.ipynb

size
size
size
size

of
of
of
of

an
an
an
an

size
size
size
size

of
of
of
of

an
an
an
an

int is %1d bytes\n", sizeof(int));

float is %1d bytes\n", sizeof(float));
double is %1d bytes\n", sizeof(double));
char is %1d bytes\n", sizeof(char));

int is 4 bytes
float is 4 bytes
double is 8 bytes
char is 1 bytes

11/16



1/31/2021 C Programming-Operators

Using the C Bitwise Shift Operators

In [16]: #include <stdio.h>

int main(void)

{
unsigned int a =1, b =1, c = 1;
int value = a << 1;
printf("Vvalue %u\n", value);
value = b << 2;
printf("Vvalue %u\n", value);
value = ¢ << 3;
printf("Value %u\n", value);

}

Value 2

Value 4

Value 8

localhost:8888/notebooks/C Programming-Operators.ipynb 12/16



1/31/2021

In [17]:

#include <stdio.h>

int main(void)

{

unsigned int a = 16, b = 16,

int value = a > 1;
printf("value %u\n", value);

value = b >> 2;
printf("Value %u\n", value);

value = c »> 3;
printf("Vvalue %u\n", value);

Value 8
Value 4
Value 2

Understanding Operator Precidence

localhost:8888/notebooks/C Programming-Operators.ipynb

C Programming-Operators

13/16



1/31/2021 C Programming-Operators
In [18]: #include <stdio.h>

int main(void)

{
int result = 1 + 2 * 3;
printf("Result %d\n", result);

}

Result 7

In [19]:  #include <stdio.h>

int main(void)

{
int result = (1 + 2) * 3;
printf("Result %d\n", result);

}

Result 9

C Operator Precidence High to Low

o I . -

++ --  + - * & |~ (type) sizeof
/ %

+ -

<< >>

== l=

&

|

&&

|

P

= += -= *= /= °°= &: N= = <<= >>=

-

localhost:8888/notebooks/C Programming-Operators.ipynb 14/16



1/31/2021 C Programming-Operators

What You will Learn Next

To perform meaningful work, programs must make decisions.

if (condition)
statement

if (condition)
statement
else
statement

localhost:8888/notebooks/C Programming-Operators.ipynb 15/16



1/31/2021 C Programming-Operators

localhost:8888/notebooks/C Programming-Operators.ipynb 16/16



