
1/31/2021 C Programming-Operators

localhost:8888/notebooks/C Programming-Operators.ipynb 1/16

Performing Basic Math Operations

Operator Operation
+ Addition
- Subtraction
* Multiplcation
/ Division

1/31/2021 C Programming-Operators

localhost:8888/notebooks/C Programming-Operators.ipynb 2/16

In [1]:

In [2]:

Understanding the C Modulo (Remainder)
Operator

Y = 14

Seconds in a day 86400
Hours in a day 24

#include <stdio.h>

int main(void)
{
 int y, slope = 3, intercept = 2, x = 4;

 y = slope * x + intercept;

 printf("Y = %d\n", y);
}

#include <stdio.h>

int main(void)
{
 long seconds_in_a_day = 60 * 60 * 24;

 int hours_in_a_day = seconds_in_a_day / (60 * 60); // Note parentheses to forc

 printf("Seconds in a day %ld\n", seconds_in_a_day);
 printf("Hours in a day %d\n", hours_in_a_day);
}

1/31/2021 C Programming-Operators

localhost:8888/notebooks/C Programming-Operators.ipynb 3/16

In [3]:

Understanding the C Increment Operator

Result 3 Remainder 1

#include <stdio.h>

int main(void)
{
 int result, remainder;

 result = 7 / 2;
 remainder = 7 % 2;

 printf("Result %d Remainder %d", result, remainder);
}

variable++ is the same as variable = variable + 1

++variable is also the same as variable = variable + 1

The difference occurs when the expression is used in an assignment

1/31/2021 C Programming-Operators

localhost:8888/notebooks/C Programming-Operators.ipynb 4/16

In [4]:

In [5]:

Understanding the C Decrement Operator

a 1 b 0

a 1 b 1

#include <stdio.h>

int main(void)
{
 int a = 0, b;

 b = a++;
 printf("a %d b %d", a, b);
}

#include <stdio.h>

int main(void)
{
 int a = 0, b;

 b = ++a;
 printf("a %d b %d", a, b);
}

1/31/2021 C Programming-Operators

localhost:8888/notebooks/C Programming-Operators.ipynb 5/16

In [6]:

In [7]:

In [8]:

a -1 b 0

a -1 b -1

ABCDEFGHIJKLMNOPQRSTUVWXYZ

variable-- is the same as variable = variable - 1

--variable is also the same as variable = variable - 1

The difference occurs when the expression is used in an assignment

#include <stdio.h>

int main(void)
{
 int a = 0, b;

 b = a--;
 printf("a %d b %d", a, b);
}

#include <stdio.h>

int main(void)
{
 int a = 0, b;

 b = --a;
 printf("a %d b %d", a, b);
}

#include <stdio.h>

int main(void)
{
 char letter;

 for (letter = 'A'; letter <= 'Z'; letter++)
 putchar(letter);
}

1/31/2021 C Programming-Operators

localhost:8888/notebooks/C Programming-Operators.ipynb 6/16

In [9]:

Understanding a Bitwise Or Operation

100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 75
74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 4
8 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22
21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

#include <stdio.h>

int main(void)
{
 int count = 100;

 while (count >= 0)
 printf("%d ", count--);
}

2 0000 0010
5 0000 0101
 --------- Bitwise OR
7 0000 0111

1/31/2021 C Programming-Operators

localhost:8888/notebooks/C Programming-Operators.ipynb 7/16

In [10]:

Understanding a Bitwise And Operation

Bitwise Or Result 7

#include <stdio.h>

int main(void)
{
 unsigned int a = 2, b = 5;

 printf("Bitwise Or Result %d", a | b);
}

2 0000 0010
5 0000 0101
 --------- Bitwise And
7 0000 0000

1/31/2021 C Programming-Operators

localhost:8888/notebooks/C Programming-Operators.ipynb 8/16

In [11]:

Understanding a Bitwise Exclusive-Or
Operation

Bitwise And Result 0

#include <stdio.h>

int main(void)
{
 unsigned int a = 2, b = 5;

 printf("Bitwise And Result %d", a & b);
}

2 0000 0010
7 0000 0111
 --------- Bitwise Exclusive Or
5 0000 0101

1/31/2021 C Programming-Operators

localhost:8888/notebooks/C Programming-Operators.ipynb 9/16

In [12]:

Using Shorthand Notation to Apply an Operation
to a Variable

Bitwise And Result 5

#include <stdio.h>

int main(void)
{
 unsigned int a = 2, b = 7;

 printf("Bitwise And Result %d", a ^ b);
}

a += 5 is the same a = a + 5
a *= 2 is the same as a = a * 2
a /= 3 is the same as a = a / 3

1/31/2021 C Programming-Operators

localhost:8888/notebooks/C Programming-Operators.ipynb 10/16

In [13]:

Understanding the C Conditional Operator

Value of a is 10
Value of a is 20

#include <stdio.h>

int main(void)
{
 int a = 5;
 a += 5;

 printf("Value of a is %d\n", a);

 a *= 2;
 printf("Value of a is %d\n", a);
}

a = 1; is the same as a = 1;
b = 2; b = 2;

if (a < b) min = (a < b) ? a: b;
 min = a;
else
 min = b;

1/31/2021 C Programming-Operators

localhost:8888/notebooks/C Programming-Operators.ipynb 11/16

In [14]:

Understanding the C sizeof Operator
In [15]:

Minimum value is 1

The size of an int is 4 bytes
The size of an float is 4 bytes
The size of an double is 8 bytes
The size of an char is 1 bytes

#include <stdio.h>

int main(void)
{
 int a = 1, b = 2, min;

 min = (a < b) ? a: b;
 printf("Minimum value is %d", min);
}

#include <stdio.h>

int main(void)
{
 printf("The size of an int is %ld bytes\n", sizeof(int));
 printf("The size of an float is %ld bytes\n", sizeof(float));
 printf("The size of an double is %ld bytes\n", sizeof(double));
 printf("The size of an char is %ld bytes\n", sizeof(char));
}

1/31/2021 C Programming-Operators

localhost:8888/notebooks/C Programming-Operators.ipynb 12/16

Using the C Bitwise Shift Operators
In [16]:

Value 2
Value 4
Value 8

#include <stdio.h>

int main(void)
{
 unsigned int a = 1, b = 1, c = 1;

 int value = a << 1;
 printf("Value %u\n", value);

 value = b << 2;
 printf("Value %u\n", value);

 value = c << 3;
 printf("Value %u\n", value);
}

1/31/2021 C Programming-Operators

localhost:8888/notebooks/C Programming-Operators.ipynb 13/16

In [17]:

Understanding Operator Precidence

Value 8
Value 4
Value 2

#include <stdio.h>

int main(void)
{
 unsigned int a = 16, b = 16, c = 16;

 int value = a >> 1;
 printf("Value %u\n", value);

 value = b >> 2;
 printf("Value %u\n", value);

 value = c >> 3;
 printf("Value %u\n", value);
}

1/31/2021 C Programming-Operators

localhost:8888/notebooks/C Programming-Operators.ipynb 14/16

In [18]:

In [19]:

Result 7

Result 9

#include <stdio.h>

int main(void)
{
 int result = 1 + 2 * 3;
 printf("Result %d\n", result);
}

#include <stdio.h>

int main(void)
{
 int result = (1 + 2) * 3;
 printf("Result %d\n", result);
}

C Operator Precidence High to Low
() [] . ->
++ -- + - * & ! ~ (type) sizeof
* / %
+ -
<< >>
== !=
&
^
|
&&
||
?:
= += -= *= /= %= &= ^= |= <<= >>=
,

1/31/2021 C Programming-Operators

localhost:8888/notebooks/C Programming-Operators.ipynb 15/16

What You will Learn Next

To perform meaningful work, programs must make decisions.

if (condition)
 statement

if (condition)
 statement
else
 statement

1/31/2021 C Programming-Operators

localhost:8888/notebooks/C Programming-Operators.ipynb 16/16

